Gaussian Aggregation Operators and Applications to Intuitionistic Fuzzy Classification
Mehmet Ünver ()
Additional contact information
Mehmet Ünver: Ankara University
Journal of Classification, 2025, vol. 42, issue 3, No 6, 596-623
Abstract:
Abstract In this study, we introduce novel aggregation operators for intuitionistic fuzzy values based on the Gaussian error function. We define the Gaussian triangular-norm and triangular-conorm operations using an Archimedean framework and propose the Gaussian weighted arithmetic (GWA) and the Gaussian weighted geometric (GWG) aggregation operators. These operators are applied to the classification of the Genus Iris dataset, using an improved cosine similarity measure and fuzzy classification algorithms. We demonstrate the effectiveness of these methods in handling uncertainty and improving classification accuracy. Our experimental results show that the GWA and GWG aggregation operators achieve superior performance, particularly in distinguishing between closely related species, with accuracy metrics surpassing some previous methods. This work highlights the utility of Gaussian-based fuzzy logic in complex classification tasks, offering insights into improving machine learning models dealing with imprecise data.
Keywords: Gaussian triangular-norm; Aggregation operator; Intuitionistic fuzzy set; Classification (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00357-025-09507-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:42:y:2025:i:3:d:10.1007_s00357-025-09507-4
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-025-09507-4
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().