Equilibrium payoffs and proposal ratios in bargaining models
Shunsuke Hanato
International Journal of Game Theory, 2020, vol. 49, issue 2, No 5, 463-494
Abstract:
Abstract We analyze a bargaining model which is a generalization of the model of Rubinstein (Econometrica 50(1):97–109, 1982) from the viewpoint of the process of how a proposer is decided in each period. In our model, a player’s probability to be a proposer depends on the history of proposers and players divide a pie of size 1. We derive a subgame perfect equilibrium (SPE) and analyze how its SPE payoffs are related to the process. In the bilateral model, there is a unique SPE. In the n-player model, although SPE may not be unique, a Markov perfect equilibrium (MPE) similar to the SPE in the bilateral model exists. In the case where the discount factor is sufficiently large, if the ratio of opportunities to be a proposer converges to some value, players divide the pie according to the ratio of this convergent value under these equilibria. This result implies that although our process has less regularity than a Markov process, the same result as in the model that uses a Markov process holds. In addition to these results, we show that the limit of the SPE (or the MPE) payoffs coincides with the asymmetric Nash bargaining solution weighted by the convergent values of the ratio of the opportunities to be a proposer.
Keywords: Non-cooperative bargaining; Subgame perfect equilibrium; Proposal ratio; Limit payoff; Asymmetric Nash bargaining solution (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00182-019-00698-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jogath:v:49:y:2020:i:2:d:10.1007_s00182-019-00698-w
Ordering information: This journal article can be ordered from
http://www.springer. ... eory/journal/182/PS2
DOI: 10.1007/s00182-019-00698-w
Access Statistics for this article
International Journal of Game Theory is currently edited by Shmuel Zamir, Vijay Krishna and Bernhard von Stengel
More articles in International Journal of Game Theory from Springer, Game Theory Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().