Predictive analytics methodology for smart qualification testing of electronic components
Stoyan Stoyanov (),
Mominul Ahsan,
Chris Bailey,
Tracy Wotherspoon and
Craig Hunt
Additional contact information
Stoyan Stoyanov: University of Greenwich
Mominul Ahsan: University of Greenwich
Chris Bailey: University of Greenwich
Tracy Wotherspoon: Microchip Technology Inc.
Craig Hunt: Microchip Technology Inc.
Journal of Intelligent Manufacturing, 2019, vol. 30, issue 3, No 33, 1497-1514
Abstract:
Abstract In electronics manufacturing, the required quality of electronic modules (e.g. packaged electronic devices) are evaluated through qualification testing using standards and user-defined requirements. The challenge for the electronics industry is that product qualification testing is time-consuming and costly. This paper focuses on the development and demonstration of a novel approach for smarter qualification using test data from the production line along with integrated computational techniques for data mining/analytics and data-driven forecasting (i.e. prognostics) modelling. The most common type of testing in the electronics industry—sequentially run electrical multi-parameter tests on the Device-under-Test (DUT), is considered. The proposed data mining (DM) framework can identify the tests that have strong correlation to pending failure of the device in the qualification (tests sensitive to pending failure) as well as to evaluate the similarity in test measurements, thus generating knowledge on potentially redundant tests. Mining the data in this context and with the proposed approach represents a major new contribution because it uncovers embedded knowledge and information in the production test data that can enable intelligent optimisation of the tests’ sequence and reduce the number of tests. The intelligent manufacturing concept behind the development of data-driven prognostics models using machine learning techniques is to use data only from a small number of tests from the full qualification specification as training data in the process of model construction. This model can then forecast the overall qualification outcome for a DUT—Pass or Fail—without performing all other remaining tests. The novelty in the context of machine learning is in the selection of the data features for the training dataset using results from tests sensitive to pending failure. Support Vector Machine (SVM) binary classifiers SVM models built with data from tests sensitive to the outcome that the module will fail are shown to have superior performance compared with models trained with other datasets of tests. Case studies based on the use of real industrial production test data for an electronic module are included in the paper to demonstrate and validate the computational approach. This work is both novel and original because at present, to the best knowledge of the authors, such predictive analytics methodology applied to qualification testing and providing benefits of test time and hence cost reduction are non-existent in the electronics industry. The integrated data analytics-prognostics approach, deployable for both off-line and in-line optimisation of production test procedures, has the potential to transform current practices by exploiting in a smarter way information and knowledge available with large datasets of qualification test data.
Keywords: Data mining; Machine learning; Smart qualification testing; Electronic components; Intelligent manufacturing; Prognostics modelling (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-018-01462-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:3:d:10.1007_s10845-018-01462-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-018-01462-9
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().