Real-time machining data application and service based on IMT digital twin
Xin Tong,
Qiang Liu (),
Shiwei Pi and
Yao Xiao
Additional contact information
Xin Tong: Beihang University
Qiang Liu: Beihang University
Shiwei Pi: Beihang University
Yao Xiao: Beihang University
Journal of Intelligent Manufacturing, 2020, vol. 31, issue 5, No 3, 1113-1132
Abstract:
Abstract With the development of manufacturing, machining data applications are becoming a key technological component of enhancing the intelligence of manufacturing. The new generation of machine tools should be digitalized, highly efficient, network-accessible and intelligent. An intelligent machine tool (IMT) driven by the digital twin provides a superior solution for the development of intelligent manufacturing. In this paper, a real-time machining data application and service based on IMT digital twin is presented. Multisensor fusion technology is adopted for real-time data acquisition and processing. Data transmission and storage are completed using the MTConnect protocol and components. Multiple forms of HMIs and applications are developed for data visualization and analysis in digital twin, including the machining trajectory, machining status and energy consumption. An IMT digital twin model is established with the aim of further data analysis and optimization, such as the machine tool dynamics, contour error estimation and compensation. Examples of the IMT digital twin application are presented to prove that the development method of the IMT digital twin is effective and feasible. The perspective development of machining data analysis and service is also discussed.
Keywords: Digital twin; Intelligent machine tool; Machining data; Data fusion; Data service (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-019-01500-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01500-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-019-01500-0
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().