Use of acoustic emission in combination with machine learning: monitoring of gas–liquid mixing in stirred tanks
Giuseppe Forte,
Federico Alberini (),
Mark Simmons and
Hugh E. Stitt
Additional contact information
Giuseppe Forte: Johnson Matthey Technology Centre
Federico Alberini: University of Birmingham
Mark Simmons: University of Birmingham
Hugh E. Stitt: Johnson Matthey Technology Centre
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 2, No 18, 633-647
Abstract:
Abstract Operations involving gas–liquid agitated vessels are common in the biochemical and chemical industry; ensuring good contact between the two phases is essential to process performance. In this work, a methodology to compute acoustic emission data, recorded using a piezoelectric sensor, to evaluate the gas–liquid mixing regime within gas–liquid and gas–solid–liquid mixtures was developed. The system was a 3L stirred tank equipped with a Rushton Turbine and a ring sparger. Whilst moving up through the vessel, gas bubbles collapse, break or coalesce generating sound waves transmitted through the wall to the acoustic transmitter. The system was operated in different flow regimes (non-gassed condition, loaded and complete dispersion) achieved by varying impeller speed and gas flow rate, with the objective to feed machine learning algorithms with the acoustic spectrum to univocally identify the different conditions. The developed method allowed to successfully recognise the operating regime with an accuracy higher than 90% both in absence and presence of suspended particles.
Keywords: Acoustic emission; Gas–liquid mixing; Stirred tank; Machine learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01611-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01611-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01611-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().