3D facility layout problem
Mariem Besbes (),
Marc Zolghadri (),
Roberta Costa Affonso (),
Faouzi Masmoudi () and
Mohamed Haddar ()
Additional contact information
Mariem Besbes: Quartz-Supmeca
Marc Zolghadri: Quartz-Supmeca
Roberta Costa Affonso: Quartz-Supmeca
Faouzi Masmoudi: University of Sfax
Mohamed Haddar: University of Sfax
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 4, No 10, 1065-1090
Abstract:
Abstract Facility layout aims to arrange a set of facilities in a site. The main objective function is to minimize the total material handling cost under production-derived constraints. This problem has received much attention during the past decades. However, these works have mainly focused on solving a 2D layout problem, dealing with the footprints of pieces of equipment. The obtained results have been then adapted to the real spatial constraints of a workshop. This research work looks to take account of spatial constraints within a 3D space from the very first steps of problem solving. The authors use a approach by combining a genetic algorithm with A*, 〈GA,A*〉 research. The genetic algorithm generates possible arrangements and A* finds the shortest paths that products must travel in a restricted 3D space. The application allows to converge to a layout minimizing the total material handling cost. This approach is illustrated by its application on an example inspired by a valve assembly workshop in Tunisia and the results are discussed from two points of view. The first one consists in comparing the effect of the choice of the distance measurement technique on the handling cost. For this purpose, the results of the application of 〈GA,A*〉 are compared with those obtained by combining the genetic algorithm and two of the most commonly used distance measurements in the literature of the discipline, namely the Euclidean distance, 〈GA,Euclidean〉, and the rectilinear distance, 〈GA,rectilinear〉. Our results show that the proposed approach offers better results than those of 〈GA,rectilinear〉 whereas they are not as good as those obtained by the 〈GA,Euclidean〉 approach. The effectiveness of the 〈GA,A*〉 approach is then studied from the perspective of the effect of the algorithm used for the generation of candidate arrangements. The final results obtained from the application of 〈GA,A*〉 are then compared with those of the approach combining particle swarm optimization and A*, 〈PSO,A*〉. This comparison shows that the 〈GA,A*〉 approach obtains better results. Nevertheless, its convergence speed is lower than that of 〈PSO,A*〉. The paper ends with some conclusions and perspectives.
Keywords: 3D configuration space; Facility layout design; Genetic algorithm; A* Search algorithm; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01603-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01603-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01603-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().