EconPapers    
Economics at your fingertips  
 

Technological troubleshooting based on sentence embedding with deep transformers

Antonio L. Alfeo (), Mario G. C. A. Cimino and Gigliola Vaglini
Additional contact information
Antonio L. Alfeo: University of Pisa
Mario G. C. A. Cimino: University of Pisa
Gigliola Vaglini: University of Pisa

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 6, No 12, 1699-1710

Abstract: Abstract In nowadays manufacturing, each technical assistance operation is digitally tracked. This results in a huge amount of textual data that can be exploited as a knowledge base to improve these operations. For instance, an ongoing problem can be addressed by retrieving potential solutions among the ones used to cope with similar problems during past operations. To be effective, most of the approaches for semantic textual similarity need to be supported by a structured semantic context (e.g. industry-specific ontology), resulting in high development and management costs. We overcome this limitation with a textual similarity approach featuring three functional modules. The data preparation module provides punctuation and stop-words removal, and word lemmatization. The pre-processed sentences undergo the sentence embedding module, based on Sentence-BERT (Bidirectional Encoder Representations from Transformers) and aimed at transforming the sentences into fixed-length vectors. Their cosine similarity is processed by the scoring module to match the expected similarity between the two original sentences. Finally, this similarity measure is employed to retrieve the most suitable recorded solutions for the ongoing problem. The effectiveness of the proposed approach is tested (i) against a state-of-the-art competitor and two well-known textual similarity approaches, and (ii) with two case studies, i.e. private company technical assistance reports and a benchmark dataset for semantic textual similarity. With respect to the state-of-the-art, the proposed approach results in comparable retrieval performance and significantly lower management cost: 30-min questionnaires are sufficient to obtain the semantic context knowledge to be injected into our textual search engine.

Keywords: Deep learning; Sentence embedding; Textual similarity; Remote technical assistance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01797-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:6:d:10.1007_s10845-021-01797-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01797-w

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:6:d:10.1007_s10845-021-01797-w