Energy inefficiency diagnosis in industrial process through one-class machine learning techniques
Mohamed El Koujok (),
Hakim Ghezzaz () and
Mouloud Amazouz ()
Additional contact information
Mohamed El Koujok: CanmetENERGY-Natural Resources Canada
Hakim Ghezzaz: CanmetENERGY-Natural Resources Canada
Mouloud Amazouz: CanmetENERGY-Natural Resources Canada
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 7, No 17, 2043-2060
Abstract:
Abstract In the era of Industry 4.0, the ease of access to precise measurements in real-time and the existence of machine-learning (ML) techniques will play a vital role in building practical tools to isolate inefficiencies in energy-intensive processes. This paper aims at developing an abnormal event diagnosis (AED) tool based on ML techniques for monitoring the operation of industrial processes. This tool makes it easier for operators to accomplish their tasks and to make quick and accurate decisions to ensure highly efficient processes. One of the most popular ML techniques for AED is the multivariate statistical control (MSC) method; it only requires the dataset of the normal operating conditions (NOC) to detect and identify the variables that contribute to abnormal events (AEs). Despite the popularity of MSC, it is challenging to select the appropriate method for detecting and isolating all possible abnormalities a complex industrial process can experience. To address this limitation and improve efficiency, we have developed a generic methodology that integrates different ML techniques into a unified multiagent based approach, the selected ML techniques are supposed to be built using only the normal operating condition. For the sake of demonstration, we chose a combination of two ML methods: principal component analysis and k-nearest neighbors (k-NN). The k-NN was integrated into the proposed multiagent to take into account the nonlinearity and multimodality that frequently occur in industrial processes. In addition, we modified a k-NN method proposed in the literature to reduce computation time during real-time detection and isolation. Finally, the proposed methodology was successfully validated to monitor the energy efficiency of a reboiler located in a thermomechanical pulp mill.
Keywords: Industrial and process efficiency; Abnormal event diagnosis; Machine-learning techniques; Augmented intelligence; Multiagent approach; Decision support systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01762-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:7:d:10.1007_s10845-021-01762-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01762-7
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().