On the role of complexity in machining time estimation
Antonio Armillotta ()
Additional contact information
Antonio Armillotta: Politecnico di Milano
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 8, No 14, 2299 pages
Abstract:
Abstract Early cost estimation of machined parts is difficult as it requires detailed process information that is not usually available during product design. Parametric methods address this issue by estimating machining time from predictors related to design choices. One of them is complexity, defined as a function of dimensions and tolerances from an analogy with information theory. However, complexity has only a limited correlation with machining time unless restrictive assumptions are made on part types and machining processes. The objective of the paper is to improve the estimation of machining time by combining complexity with additional parameters. For this purpose, it is first shown that three factors that influence machining time (part size, area of machined features, work material) are not fully captured by complexity alone. Then an optimal set of predictors is selected by regression analysis of time estimates made on sample parts using an existing feature-based method. The proposed parametric model is shown to predict machining time with an average percentage error of 25% compared to the baseline method, over a wide range of part geometries and machining processes. Therefore, the model is accurate enough to support comparison of design alternatives as well as bidding and make-or-buy decisions.
Keywords: Design for manufacturing; Cost estimation; Machining; Cycle time; Tolerances; Complexity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01741-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01741-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01741-y
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().