EconPapers    
Economics at your fingertips  
 

Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization

Xuejun Zhao, Yong Qin (), Changbo He and Limin Jia
Additional contact information
Xuejun Zhao: Beijing Jiaotong University
Yong Qin: Beijing Jiaotong University
Changbo He: Anhui University
Limin Jia: Beijing Jiaotong University

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 1, No 10, 185-201

Abstract: Abstract The incipient bearing fault diagnosis is crucial to the industrial machinery maintenance. Developed based on the blind source separation, blind source extraction (BSE) has recently become the focus of intensive research work. However, owing to certain industrial restrictions, the number of sensors is usually less than that of the source signals, which is defined as an underdetermined BSE problem to identify the fault signals. The kernelized methods are found to be robust to the noise, especially in the presence of outliers, which makes it a suitable tool to extract fault signatures submerged in the strong environment noise. Thus, this paper proposes a new underdetermined BSE method based on the empirical mean decomposition and kernelized correlation. The experimental results indicate that the extracted fault signature presents more obvious periodicity. Two important parameters of this method, including the multi-shift number and the kernel size are investigated to improve the algorithm performance. Furthermore, performance comparisons with underdetermined BSE based on the second order correlation are made to emphasize the advantage of the presented method. The application of the proposed method is validated using the simulated signal and the rolling element bearing signal of the train vehicle axle.

Keywords: Blind source extraction; Signal decomposition; Kernelized correlation; Fault diagnosis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01655-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01655-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01655-1

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01655-1