EconPapers    
Economics at your fingertips  
 

Generative models for capturing and exploiting the influence of process conditions on process curves

Tarek Iraki () and Norbert Link ()
Additional contact information
Tarek Iraki: Karlsruhe University of Applied Sciences
Norbert Link: Karlsruhe University of Applied Sciences

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 2, No 6, 473-492

Abstract: Abstract Variations of dedicated process conditions (such as workpiece and tool properties) yield different process state evolutions, which are reflected by different time series of the observable quantities (process curves). A novel method is presented, which firstly allows to extract the statistical influence of these conditions on the process curves and its representation via generative models, and secondly represents their influence on the ensemble of curves by transformations of the representation space. A latent variable space is derived from sampled process data, which represents the curves with only few features. Generative models are formed based on conditional propability functions estimated in this space. Furthermore, the influence of conditions on the ensemble of process curves is represented by estimated transformations of the feature space, which map the process curve densities with different conditions on each other. The latent space is formed via Multi-Task-Learning of an auto-encoder and condition-detectors. The latter classifies the latent space representations of the process curves into the considered conditions. The Bayes framework and the Multi-task Learning models are used to obtain the process curve probabilty densities from the latent space densities. The methods are shown to reveal and represent the influence of combinations of workpiece and tool properties on resistance spot welding process curves.

Keywords: Process modeling; Convolutional Neural Networks; Generative models; Multi-task learning; Low-dimensional process representations; Hyper-models; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01846-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01846-4

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01846-4

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01846-4