EconPapers    
Economics at your fingertips  
 

Bayesian network for integrated circuit testing probe card fault diagnosis and troubleshooting to empower Industry 3.5 smart production and an empirical study

Wenhan Fu, Chen-Fu Chien () and Lizhen Tang
Additional contact information
Wenhan Fu: National Tsing Hua University
Chen-Fu Chien: National Tsing Hua University
Lizhen Tang: National Tsing Hua University

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 3, No 10, 785-798

Abstract: Abstract Probe card that serves as the carrier of die and the transmitter of information is an indispensable test interface for integrated circuit testing. The probe card extracts the electrical signal of chip and sends it to the prober to screen defectives. In the process of interface transmission, signal disturbance or attenuation will lead to functional errors, and the output result will be different from the expected one to the screen of selected known good dies for integrated circuit packaging and final test. If abnormal situations happen with probe cards, the engineers will eliminate potential fault causes by trial and error method according to domain knowledge and personal experience for troubleshooting. As semiconductor industry is continuously migrating with shrinking feature size, the diagnosing and troubleshooting procedure for probe card is exponentially complicated and time-consuming. To enhance data integrity of circuit probe testing, this study aims to develop a Bayesian network for probe card fault diagnosis and troubleshooting via the integrated data-driven solutions considering potential rules derived from domain knowledge and manufacturing big data to empower Industry 3.5 smart production. An empirical study is conducted in a leading semiconductor testing company for validation. The experiment results show that the proposed approach can improve one-shot probability from 0.13 to 0.36 to improve one-shot success chance in troubleshooting process. The expected shooting times for probe faults have been reduced from 11 times to 3.96 times on average to save 63.97% of fault troubleshooting efforts in testing process. The proposed approach can provide effective suggestions to shorten troubleshooting time for yield improvement and subsequent packaging cost reduction to empower flexible decision-making for smart production. The results have shown practical viability of proposed approach for Industry 3.5. Indeed, the developed solutions have been implemented in real settings.

Keywords: Industry 3.5; Bayesian network; Advanced quality control; Fault diagnosis; UNISON decision framework (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01680-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01680-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01680-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01680-0