Pitfalls and protocols of data science in manufacturing practice
Chia-Yen Lee () and
Chen-Fu Chien
Additional contact information
Chia-Yen Lee: National Taiwan University
Chen-Fu Chien: National Tsing Hua University
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 5, No 1, 1189-1207
Abstract:
Abstract Driven by ongoing migration for Industry 4.0, the increasing adoption of artificial intelligence, big data analytics, cloud computing, Internet of Things, and robotics have empowered smart manufacturing and digital transformation. However, increasing applications of machine learning and data science (DS) techniques present a range of procedural issues including those that involved in data, assumptions, methodologies, and applicable conditions. Each of these issues may increase difficulties for implementation in practice, especially associated with the manufacturing characteristics and domain knowledge. However, little research has been done to examine and resolve related issues systematically. Gaps of existing studies can be traced to the lack of a framework within which the pitfalls involved in implementation procedures can be identified and thus appropriate procedures for employing effective methodologies can be suggested. This study aims to develop a five-phase analytics framework that can facilitate the investigation of pitfalls for intelligent manufacturing and suggest protocols to empower practical applications of the DS methodologies from descriptive and predictive analytics to prescriptive and automating analytics in various contexts.
Keywords: Machine learning; Data science; Smart manufacturing; Big data; Prescriptive analytics; Automating analytics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01711-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01711-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01711-w
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().