EconPapers    
Economics at your fingertips  
 

Degradation principle of machines influenced by maintenance

Yuanju Qu () and Zengtao Hou ()
Additional contact information
Yuanju Qu: College of Management, Shenzhen University
Zengtao Hou: Shenzhen University Town

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 5, No 16, 1530 pages

Abstract: Abstract Maintenance is important for the service of products and it is different from repair because repair focuses on the time node when the products break down, which is a qualitative problem, but maintenance pays more attention to the continuity of machine’s work, and thus it is not a qualitative problem. Nevertheless, almost all the study methods are of qualitative methods because they only qualitatively divided the health state of machines into several levels, which are not fit to comprehensively explore the degradation principle of machines and the relationship between degradation and maintenance. To discover the degradation principle of machines influenced by maintenance, a quantitative study method is proposed by calculating the Health Index (HI) based on fuzzy analytic hierarchy process (FAHP) and convolutional neural network (CNN). Finally, a case study is used to demonstrate the implementation and potential applications of the proposed method, in which two major maintenance methods in prognostic and health management (PHM), i.e. time-based maintenance (TBM) and condition-based maintenance (CBM) are studied. The results show that the application of the proposed method leads to a significant increase in the life of machines. This study puts forward a new method to study the degradation principle of machines and will lead to the development of PHM using the HI.

Keywords: Product health management; Health state; Health index; Fuzzy analytic hierarchy process; Convolutional neural network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01739-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-021-01739-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01739-6

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-021-01739-6