EconPapers    
Economics at your fingertips  
 

Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning

Christopher Hagedorn (), Johannes Huegle () and Rainer Schlosser ()
Additional contact information
Christopher Hagedorn: University of Potsdam
Johannes Huegle: University of Potsdam
Rainer Schlosser: University of Potsdam

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 7, No 8, 2027-2043

Abstract: Abstract In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine log data from production monitoring. Within this process, we define a set of transformation rules to extract independent and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production stops based on experience.

Keywords: Causal structure learning; Log data; Causal inference; Manufacturing industry (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01952-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01952-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-01952-x

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01952-x