EconPapers    
Economics at your fingertips  
 

A hybrid genetic algorithm for parallel machine scheduling with setup times

J. Adan ()
Additional contact information
J. Adan: Eindhoven University of Technology

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 7, No 10, 2059-2073

Abstract: Abstract This paper addresses the unrelated parallel machine scheduling problem with sequence and machine dependent setup times and machine eligibility constraints. The objective is to minimize the maximum completion time (makespan). Instances of more than 500 jobs and 50 machines are not uncommon in industry. Such large instances become increasingly challenging to provide high-quality solutions within limited amount of computational time, but so far, have not been adequately addressed in recent literature. A hybrid genetic algorithm is developed, which is lean in the sense that is equipped with a minimal number of parameters and operators, and which is enhanced with an effective local search operator, specifically targeted to solve large instances. For evaluation purposes a new set of larger problems is generated, consisting of up to 800 jobs and 60 machines. An extensive comparative study shows that the proposed method performs significantly better compared to other state-of-the-art algorithms, especially for the new larger instances. Also, it is demonstrated that calibration is crucial and in practice it should be targeted at a narrower set of representative instances.

Keywords: Scheduling; Parallel machines; Makespan; Setup times (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01959-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01959-4

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-01959-4

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01959-4