EconPapers    
Economics at your fingertips  
 

Optimal droplet transfer mode maintenance for wire + arc additive manufacturing (WAAM) based on deep learning

Jian Qin, Yipeng Wang (), Jialuo Ding and Stewart Williams
Additional contact information
Jian Qin: Cranfield University
Yipeng Wang: Beijing University of Technology
Jialuo Ding: Cranfield University
Stewart Williams: Cranfield University

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 7, No 18, 2179-2191

Abstract: Abstract In the last decade, wire + arc additive manufacturing (WAAM), which is one of the most promising metal additive manufacturing technologies, has been attracting high interest from both academia and industry. WAAM systems are increasingly employed in the industry and academia, but there are still several challenges and barriers to process stability control. The process stability is highly dependent on how the molten feed wire is added into the melt pool, which is known as the droplet transfer mode. To ensure a stable WAAM deposition process, it is essential to maintain the transfer mode in a suitable stable status. Without an effective transfer mode control method, the operators need to determine and control the transfer mode based on their experience using manual adjustment, which is difficult to achieve in a long period of production process. In this paper, a deep learning-based technology was proposed for the control of the droplet transfer mode based on the data collected from the WAAM process. A long short term memory neural network was applied as the core transfer mode classification model. A time-series data, arc voltage, was collected and statistical and frequency features were extracted, which included 11 relevant features, as the inputs of the classification model. Then, the distance between the melted wire and the melt pool was adjusted based on the determined transfer mode to keep a suitable stability of the process. A case study was used to evaluate the proposed approach and to show its merit. The proposed approach was compared to three commonly used machine learning algorithms, k-nearest neighbours, support vector machine, and decision tree. The proposed method obtained the highest accuracy in determining the transfer mode, which was over 91%. The performance of the proposed approach was also evaluated by the single-pass and oscillated wall building. The proposed deep learning based approach improved the process stability in real-time, which resulted in better deposition qualities, in terms of geometry size and processing cleanliness compared to without control. Furthermore, this data-driven method could be applied to other WAAM processes and materials.

Keywords: WAAM; Deposition process stability; Droplet transfer mode; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01986-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01986-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-01986-1

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01986-1