EconPapers    
Economics at your fingertips  
 

A data-driven method for performance analysis and improvement in production systems with quality inspection

Jun-Qiang Wang, Yun-Lei Song, Peng-Hao Cui and Yang Li ()
Additional contact information
Jun-Qiang Wang: Northwestern Polytechnical University
Yun-Lei Song: Northwestern Polytechnical University
Peng-Hao Cui: Northwestern Polytechnical University
Yang Li: Northwestern Polytechnical University

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 2, No 3, 455-469

Abstract: Abstract The advance of new generation of IT and sensor technologies results in data enriched production environment. However, there is a lack of an effective utilization of the data to improve productivity while reducing quality management cost. Therefore, this paper proposes a systematic method to analyze the production dynamics, and presents an event-based method to quantitatively evaluate the impact of various disruptions on system throughput, including machine breakdown and quality failure. It is proved that the impact of the events can be measured with system loss which is the summation of the production loss of the slowest machine and the overall number of defective parts produced in the subsystem where the slowest machine locates in. The data-driven method is integrated into an optimization method to exploit the optimal quality inspection allocations. In the method, a non-linear optimization problem is formulated and solved with an adaptive genetic algorithm to trade off the penalty cost of production loss and the investment cost of quality inspection. The research results in a comprehensive understanding of production dynamics subject to quality inspection and rework. It is of critical importance to boost productivity with better quality inspection allocations. Simulation studies are performed to validate the proposed methods.

Keywords: Data-driven analysis; Production dynamics; Quality inspection allocation; Throughput (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01780-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01780-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01780-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01780-5