EconPapers    
Economics at your fingertips  
 

A data-driven method of selective disassembly planning at end-of-life under uncertainty

Yicong Gao, Shanhe Lou, Hao Zheng () and Jianrong Tan
Additional contact information
Yicong Gao: Zhejiang University
Shanhe Lou: Zhejiang University
Hao Zheng: Beihang University
Jianrong Tan: Zhejiang University

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 2, No 10, 565-585

Abstract: Abstract Selective disassembly is a systematic method to remove target components or high-valuable components from an EOL product for reuse, recycling and remanufacturing as quick and feasible as possible, which plays a key role for the effective application of circular economy. However, in practice, the process of selective disassembly is usually characterized by various unpredictable factors of EOL products. It is very difficult to identify a feasible disassembly sequence for getting the target components before taking actions due to the uncertainty. In this paper, a data-driven method of selective disassembly planning for EOL products under uncertainty is proposed, in which disassemblability is regarded as the degree of difficulty in removing components under uncertainty. Taxonomy of uncertainty metrics that represents uncertain characteristics of components and disassembly transitions of selective disassembly is established. Random and fuzzy assessment data of uncertainty is converted into qualitative values and aggregated to fit a prediction model based on the trapezium cloud model. The turning time of disassemblability is predicted for a given set of certainty degree. Further, the disassemblability values are applied to determine the best selective disassembly sequence in order to get target component with tradeoff between minimum number of disassembly operations and maximum feasibility. The effectiveness of the proposed method is illustrated by a numerical example. Moreover, by comparing to selective disassembly planning without considering uncertainty, the proposed method turns selective disassembly of EOL products more realistic than 11% and provide insights on how to design product to facilitate disassembly operations.

Keywords: Selective disassembly planning; Trapezium cloud; Uncertainty modeling; Artificial bee colony (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01812-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01812-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01812-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01812-0