Self learning-empowered thermal error control method of precision machine tools based on digital twin
Chi Ma (),
Hongquan Gui () and
Jialan Liu ()
Additional contact information
Chi Ma: Chongqing University
Hongquan Gui: Chongqing University
Jialan Liu: Chongqing University
Journal of Intelligent Manufacturing, 2023, vol. 34, issue 2, No 17, 695-717
Abstract:
Abstract To improve machining accuracy of complex parts, a self learning-empowered thermal error control method of precision machine tools is presented based on digital twin. The memory of thermal error is theoretically and numerically revealed by error mechanism analysis, and then the applicability of long-short-term memory (LSTM) neural network (NN) in the training of the self-learning error model is proved. To improve the predictive accuracy, the Bayesian optimization algorithm is used to optimize such hyper-parameters as the epoch size, batch size, and the number of hidden nodes of the LSTM NN model. Then the self-learning prediction model of thermal error is proposed based on Bayesian-LSTM NN. The fitting and prediction performance of the proposed Bayesian-LSTM NN is better than that of such models as the LSTM NN with random hyperparameters, back propagation NN, multiple linear regression analysis (MLRA), and least square support vector machine (LSSVM). Finally, the self learning-empowered error control method is proposed based on digital twin, and the Bayesian-LSTM NN error control model is embedded into the self learning-empowered error control framework to realize the real-time thermal error prediction and control. When the predicted thermal error is greater than the preset machining error, the control components are recalculated automatically, and inserted into the machining instructions. It is shown that the machining error can be reduced effectively by the self learning-empowered error control method, which is vital for precision machining of complex parts and improvement of the intelligence level.
Keywords: Digital twin; Self learning; Bayesian-LSTM neural network; Error prediction model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01821-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01821-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01821-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().