EconPapers    
Economics at your fingertips  
 

Knowledge-driven framework for industrial robotic systems

Timon Hoebert, Wilfried Lepuschitz, Markus Vincze and Munir Merdan ()
Additional contact information
Timon Hoebert: Practical Robotics Institute Austria
Wilfried Lepuschitz: Practical Robotics Institute Austria
Markus Vincze: Vienna University of Technology
Munir Merdan: Practical Robotics Institute Austria

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 2, No 21, 788 pages

Abstract: Abstract Due to their advantages, there is an increase of applying robotic systems for small batch production as well as for complex manufacturing processes. However, programming and configuring robots is time and resource consuming while being also accompanied by high costs that are especially challenging for small- and medium-sized enterprises. The current way of programming industrial robots by using teach-in control devices and/or using vendor-specific programming languages is in general a complex activity that requires extensive knowledge in the robotics domain. It is therefore important to offer new practical methods for the programming of industrial robots that provide flexibility and versatility in order to achieve feasible robotics solutions for small lot size productions. This paper focuses on the development of a knowledge-driven framework, which should overcome the limitations of state-of-the-art robotics solutions and enhance the agility and autonomy of industrial robotics systems using ontologies as a knowledge-source. The framework includes reasoning and perception abilities as well as the ability to generate plans, select appropriate actions, and finally execute these actions. In this context, a challenge is the fusion of vision system information with the decision-making component, which can use this information for generating the assembly tasks and executable programs. The introduced product model in the form of an ontology enables that the framework can semantically link perception data to product models to consequently derive handling operations and required tools. Besides, the framework enables an easier adaption of robot-based production systems for individualized production, which requires swift configuration and efficient planning. The presented approach is demonstrated in a laboratory environment with an industrial pilot test case. Our application shows the potential to reduce the efforts needed to program robots in an automated production environment. In this context, the benefits as well as shortcomings of the approach are also discussed in the paper.

Keywords: Industrial robot; Ontology; Perception; Automated planning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01826-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01826-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01826-8

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01826-8