Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications
Laith Abualigah and
Ali Diabat ()
Additional contact information
Laith Abualigah: Amman Arab University
Ali Diabat: New York University Abu Dhabi
Journal of Intelligent Manufacturing, 2023, vol. 34, issue 4, No 19, 1833-1874
Abstract:
Abstract This paper proposes a new search method based on an augmented version of the Arithmetic Optimization Algorithm to solve various benchmark functions, engineering design cases, and feature selection problems. The proposed method is called MCAOA, combined with the Marine Predators Algorithm and a new proposed Ensemble Mutation Strategy. The Arithmetic Optimization Algorithm is a new meta-heuristic technique used to solve optimization problems. Sometimes, Arithmetic Optimization Algorithm faces convergence problems and falls into local optima for specific optimization problems, especially large-scale and multimodal problems. The Marine Predators Algorithm and Ensemble Mutation Strategy improve the Arithmetic Optimization Algorithm’s convergence rate and equilibrium in the exploration and exploitation search methods. The proposed method is tested on 23 different benchmark functions, seven common engineering design cases, and sixteen feature selection problems. The obtained results are compared with other well-known and state-of-the-art methods. The experimental results indicated that the proposed method found new best solutions for different complicated problems; the general performance is promising compared to other comparative methods.
Keywords: Arithmetic optimization algorithm (AOA); Ensemble mutation; Marine predators algorithm; Engineering design problems; Feature selection; Global optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01877-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01877-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01877-x
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().