EconPapers    
Economics at your fingertips  
 

An improved artificial algae algorithm integrated with differential evolution for job-shop scheduling problem

Abdelmonem M. Ibrahim and Mohamed A. Tawhid ()
Additional contact information
Abdelmonem M. Ibrahim: Al-Azhar University
Mohamed A. Tawhid: Thompson Rivers University

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 4, No 15, 1763-1778

Abstract: Abstract For the past decades, practitioners and researchers have been fascinated by the job-shop scheduling problems (JSSP) and have proposed many pristine meta-heuristic algorithms to solve them. JSSP is an NP-hard problem and a combinatorial optimization problem. This paper proposes a highly efficient and superior performance strategy for the artificial algae algorithm (AAA) integrated with the differential evolution (DE), denoted AAADE, to solve JSSP. The new movement algae colonies using DE operators are introduced to the proposed hybrid artificial algae algorithm and DE (AAADE). To improve AAA’s intensification ability, the movement using the DE mutation is implemented into the AAA. In the new hybrid method, the DE crossover can update its position based on both movements (helical and DE movements) to increase randomization. Two categories of problems verify the efficiency and validity of the proposed hybrid algorithm, AAADE, namely, CEC 2014 benchmark functions and different job-shop scheduling problems. The AAADE results are compared with other algorithms in the literature. Hence, comparisons numerical experiments validated and verified the quality of the proposed algorithm. Experimental results validate the effectiveness of the proposed hybrid method in producing excellent solutions that are promising and competitive to the state-of-the-art heuristic-based algorithms reported in the literature in most of the benchmark functions in CEC’14 and JSSP.

Keywords: Artificial algae algorithm; Bio-inspired algorithm; Differential evolution; Job-shop scheduling problem; Metaheuristics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01888-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01888-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01888-8

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01888-8