EconPapers    
Economics at your fingertips  
 

Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

Mengrui Zhu, Yun Yang, Xiaobing Feng, Zhengchun Du () and Jianguo Yang
Additional contact information
Mengrui Zhu: Shanghai Jiao Tong University
Yun Yang: Shanghai Jiao Tong University
Xiaobing Feng: Shanghai Jiao Tong University
Zhengchun Du: Shanghai Jiao Tong University
Jianguo Yang: Shanghai Jiao Tong University

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 4, No 27, 2013-2026

Abstract: Abstract Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.

Keywords: Thermal error; Machine tool; Artificial intelligence; Random forest; Machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01894-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01894-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01894-w

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01894-w