Guided deep subdomain adaptation network for fault diagnosis of different types of rolling bearings
Ruohui Hu,
Min Zhang (),
Zaiyu Xiang and
Jiliang Mo
Additional contact information
Ruohui Hu: Southwest Jiaotong University
Min Zhang: Southwest Jiaotong University
Zaiyu Xiang: Southwest Jiaotong University
Jiliang Mo: Southwest Jiaotong University
Journal of Intelligent Manufacturing, 2023, vol. 34, issue 5, No 9, 2225-2240
Abstract:
Abstract The plentiful labeled data is indispensable for data-driven intelligent fault diagnosis of rolling bearings. But in the real world, it is difficult to gather sufficient vibration signals in advance when faults occur. Selecting an intelligent model trained by other datasets to diagnose the target signals is an effective strategy in response to the data scarcity. In this paper, a guided deep subdomain adaptation network (GDSAN) is proposed to align the feature distributions across different datasets efficiently by minimizing the discrepancy between the distributions of relevant subdomains. Specifically, the proposed method realizes alignment by comparing the consistency of source labels and target pseudo labels predicted by the source classifier. The guided learning reduces the misjudgment of target pseudo labels, which helps the subdomain with identical label finding the proper common subspace more accurately. To evaluate the superiority of the proposed model, this paper conducts transfer experiments on six rolling bearing datasets and selects four mainstream deep transfer learning networks to compare with GDSAN. The results show the fault recognition accuracy of GDSAN is prominently higher than other approaches, meanwhile verify the need of using guided subdomain adaptation.
Keywords: Intelligent fault diagnosis; Transfer learning; Subdomain adaptation; Guided learning; Different datasets (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01910-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01910-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-022-01910-7
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().