EconPapers    
Economics at your fingertips  
 

A novel disassembly process of end-of-life lithium-ion batteries enhanced by online sensing and machine learning techniques

Yingqi Lu, Maede Maftouni, Tairan Yang, Panni Zheng, David Young, Zhenyu James Kong () and Zheng Li ()
Additional contact information
Yingqi Lu: Virginia Tech
Maede Maftouni: Virginia Tech
Tairan Yang: Virginia Tech
Panni Zheng: Li Industries, Inc.
David Young: Li Industries, Inc.
Zhenyu James Kong: Virginia Tech
Zheng Li: Virginia Tech

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 5, No 23, 2463-2475

Abstract: Abstract An effective lithium-ion battery (LIB) recycling infrastructure is of great importance to alleviate the concerns over the disposal of waste LIBs and the sustainability of critical elements for producing LIB components. The End-of-life (EOL) LIBs are in various sizes and shapes, which create significant challenges to automate a few unit operations (e.g., disassembly at the cell level) of the recycling process. Meanwhile, hazardous and flammable materials are contained in LIBs, posing great threats to the human exposure. Therefore, it is difficult to dismantle the LIBs safely and efficiently to recover critical materials. Automation has become a competitive solution in manufacturing world, which allows for mass production at outstanding speeds and with great repeatability or quality. It is imperative to develop automatic disassembly solution to effectively disassemble the LIBs while safeguarding human workers against the hazards environment. In this work, we demonstrate an automatic battery disassembly platform enhanced by online sensing and machine learning technologies. The computer vision is used to classify different types of batteries based on their brands and sizes. The real-time temperature data is captured from a thermal camera. A data-driven model is built to predict the cutting temperature pattern and the temperature spike can be mitigated by the close-loop control system. Furthermore, quality control is conducted using a neural network model to detect and mitigate the cutting defects. The integrated disassembly platform can realize the real-time diagnosis and closed-loop control of the cutting process to optimize the cutting quality and improve the safety.

Keywords: Lithium-ion battery; Battery dismantling; Battery recycling; Machine learning; Online sensing (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01936-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01936-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-01936-x

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01936-x