EconPapers    
Economics at your fingertips  
 

Digital Twin and web services for robotic deburring in intelligent manufacturing

Liliana Stan, Adrian Florin Nicolescu, Cristina Pupăză () and Gabriel Jiga
Additional contact information
Liliana Stan: Politehnica University of Bucharest
Adrian Florin Nicolescu: Politehnica University of Bucharest
Cristina Pupăză: Politehnica University of Bucharest
Gabriel Jiga: Politehnica University of Bucharest

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 6, No 15, 2765-2781

Abstract: Abstract The development of modern manufacturing requires key solutions to enhance the intelligence of manufacturing such as digitalization, real-time monitoring, or simulation techniques. For smart robotic manufacturing, the modern approach regarding robot programming and process planning aims for both high efficiency and energy-awareness. During the design and manufacturing stages, optimization becomes crucial and can be fulfilled by means of appropriate digital manufacturing tools. This paper presents the development of a Digital Twin for a robotic deburring workcell along with the process planning and robot programming. Considering a large size workpiece, a new robot programming solution was implemented, based on image processing to safely re-machine only areas where burrs could not be completely removed in the main deburring routine. The work also covers the development of a new web platform to remotely monitor the robotic workcell, to trigger alerts for unexpected events and to allow the control to authorized personnel enabled by the employment of robot web services following an architectural RESTful style which establishes a communication link to the robot virtual controller. The aim of this research is to integrate the Digital Twin with the innovative proposals of Industry 4.0, offering a project-based model of smart robotic manufacturing and experience concepts such as Cyber-Physical System, digitalization, data acquisition, continuous monitoring, and intelligent solutions in a novel approach. Furthermore, the work covers energy consumption strategies for energy-aware robotic manufacturing. Finally, the results of an energy-efficient motion planning along with signal-based scheduling optimization of the robotic deburring cell are discussed.

Keywords: Digital twin; Industrial robot; Web services; Robotic deburring (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01928-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01928-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-01928-x

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01928-x