EconPapers    
Economics at your fingertips  
 

Part family formation method for delayed reconfigurable manufacturing system based on machine learning

Sihan Huang, Guoxin Wang (), Shiqi Nie, Bin Wang and Yan Yan
Additional contact information
Sihan Huang: Beijing Institute of Technology
Guoxin Wang: Beijing Institute of Technology
Shiqi Nie: Beijing Institute of Technology
Bin Wang: China Academy of Launch Vehicle Technology
Yan Yan: Beijing Institute of Technology

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 6, No 20, 2849-2863

Abstract: Abstract Delayed reconfigurable manufacturing system (D-RMS), a subclass of reconfigurable manufacturing system (RMS), were proposed to solve the convertibility problems of RMS. As a part family-oriented manufacturing system paradigm, D-RMS should concern delayed reconfiguration at the outset of part family formation. To bring the characteristics of delayed reconfiguration into the part family of D-RMS, an exclusive part family formation method for D-RMS based on machine learning is proposed in this paper. Firstly, a similarity coefficient that considers the characteristics of D-RMS is put forward based on the operation sequence of part. The positions of the common operations in the corresponding operation sequences are investigated. The more former common operations there are, the more probability it is that the parts are grouped into the same part family. The relative positions of the common operations are considered by proposing a concept of the longest relative position common operation subsequence (LPCS). Additionally, the position difference and discontinuity of the LPCSs in the corresponding operation sequences are analyzed. A similarity coefficient is proposed that incorporates the abovementioned factors. Secondly, a machine learning method named K-medoids is adopted to group parts into families based on the calculation result of the similarity coefficient. Finally, a case study is presented to implement the proposed part family formation method for D-RMS, where the effectiveness of the proposed method is verified through comparison.

Keywords: Delayed reconfigurable manufacturing system; Part family formation; Similarity coefficient; Machine learning; K-medoids (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01956-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01956-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-01956-7

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01956-7