EconPapers    
Economics at your fingertips  
 

Dynamic spatial–temporal graph-driven machine remaining useful life prediction method using graph data augmentation

Chaoying Yang, Jie Liu (), Kaibo Zhou and Xinyu Li
Additional contact information
Chaoying Yang: Huazhong University of Science and Technology
Jie Liu: Huazhong University of Science and Technology
Kaibo Zhou: Huazhong University of Science and Technology
Xinyu Li: Huazhong University of Science and Technology

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 1, No 21, 355-366

Abstract: Abstract It is beneficial to maintain the normal operation of machines by conducting remaining useful life (RUL) prediction. Recently, graph data-driven machine RUL prediction methods have made a great success, since graph can model spatial and temporal dependencies of signals. However, the constructed graphs still have some limitations: (1) In the practical industrial production, the installation of multi-sensor networks is expensive and hard to achieve, so the single sensor is commonly used for data monitoring. However, most of these methods constructed graphs by establishing relationships between the different sensors, which are completely unsuitable for prediction tasks in single-sensor scenarios. (2) The quality of constructed graph is low, where the graph structure is fixed, failing in representing the machine degradation process. To overcome these limitations, a dynamic spatial–temporal (ST) graph-driven machine RUL prediction method using graph data augmentation (GDA) is proposed. The ST graph is constructed using short-time Fourier transform, capturing the frequency-domain and time-domain information hidden in the signals. Then, a GDA framework is designed to generate dynamic ST graphs, enlarging the structural differences of subgraphs. Subsequently, a GDA-based graph deep learning prediction model is constructed for dynamic ST graph-based RUL prediction, where an autoencoder-based graph embedding module is designed to replace simple Readout. Verification experiments are conducted on two case studies, and the results show that the proposed prediction method achieves a competitive performance.

Keywords: Dynamic spatial–temporal graph; Autoencoder; Remaining useful life prediction; Graph data augmentation; Graph deep learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02052-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02052-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-02052-6

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02052-6