EconPapers    
Economics at your fingertips  
 

Attention-driven transfer learning framework for dynamic model guided time domain chatter detection

Chen Yin, Yulin Wang, Jeong Hoon Ko (), Heow Pueh Lee and Yuxin Sun
Additional contact information
Chen Yin: Nanjing University of Science and Technology
Yulin Wang: Nanjing University of Science and Technology
Jeong Hoon Ko: Singapore Institute of Manufacturing Technology
Heow Pueh Lee: National University of Singapore
Yuxin Sun: Nanjing University of Science and Technology

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 4, No 24, 1867-1885

Abstract: Abstract Online chatter detection is crucial to ensure the quality and safety of the high-speed milling process. The rapid development of the deep learning community provides a promising tool for chatter detection. However, most previous chatter detection studies rely on complex signal processing techniques, leading to the separation of feature extraction and chatter detection and reducing detection efficiency. Additionally, these studies are developed for a limited range of machining conditions because the development of their model relies on experimental data, while performing experiments with numerous combinations of machining parameters is expensive and time-consuming. To tackle these drawbacks, this paper proposes a transfer learning chatter detection framework that doesn’t rely on any experimental data. The proposed framework is composed of the dynamic milling process model, the Double Attention-driven One-Dimension Convolutional Neural Networks (DAOCNN), and the ensemble prediction strategy. Firstly, a dynamic milling process model is established to generate simulated cutting force signals over a wide range of machining parameters, providing abundant training data and saving experimental costs. Then, without any complex signal processing method, the detection results are directly predicted by the proposed DAOCNN from the time-domain signals, eliminating the separation of feature extraction and chatter detection. Finally, a novel ensemble prediction strategy is proposed to ensure an accurate and robust prediction. To validate the effectiveness of the proposed framework, actual milling experiments are carried out under different cutting conditions. Moreover, contrastive studies with other detection approaches and ensemble methods are also performed. The results demonstrate that the milling stability is correctly predicted by the proposed method in an accurate and efficient manner, which indicates the proposed framework can be a promising tool for online chatter detection.

Keywords: Chatter detection; Dynamic modeling; Attention mechanism; Deep learning; Ensemble learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02133-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02133-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02133-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02133-0