EconPapers    
Economics at your fingertips  
 

A framework for fault detection and diagnostics of articulated collaborative robots based on hybrid series modelling of Artificial Intelligence algorithms

Adalberto Polenghi (), Laura Cattaneo () and Marco Macchi ()
Additional contact information
Adalberto Polenghi: Politecnico di Milano
Laura Cattaneo: Università Carlo Cattaneo - LIUC
Marco Macchi: Politecnico di Milano

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 5, No 3, 1929-1947

Abstract: Abstract Smart factories build on cyber-physical systems as one of the most promising technological concepts. Within smart factories, condition-based and predictive maintenance are key solutions to improve competitiveness by reducing downtimes and increasing the overall equipment effectiveness. Besides, the growing interest towards operation flexibility has pushed companies to introduce novel solutions on the shop floor, leading to install cobots for advanced human-machine collaboration. Despite their reliability, also cobots are subjected to degradation and functional failures may influence their operation, leading to anomalous trajectories. In this context, the literature shows gaps in what concerns a systematic adoption of condition-based and predictive maintenance to monitor and predict the health state of cobots to finally assure their expected performance. This work proposes an approach that leverages on a framework for fault detection and diagnostics of cobots inspired by the Prognostics and Health Management process as a guideline. The goal is to habilitate first-level maintenance, which aims at informing the operator about anomalous trajectories. The framework is enabled by a modular structure consisting of hybrid series modelling of unsupervised Artificial Intelligence algorithms, and it is assessed by inducing three functional failures in a 7-axis collaborative robot used for pick and place operations. The framework demonstrates the capability to accommodate and handle different trajectories while notifying the unhealthy state of cobots. Thanks to its structure, the framework is open to testing and comparing more algorithms in future research to identify the best-in-class in each of the proposed steps given the operational context on the shop floor.

Keywords: Fault detection; Diagnostics; Collaborative robot; Cobot; Artificial intelligence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02076-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02076-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02076-6

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02076-6