Predicting the number of printed cells during inkjet-based bioprinting process based on droplet velocity profile using machine learning approaches
Xi Huang,
Wei Long Ng () and
Wai Yee Yeong ()
Additional contact information
Xi Huang: Nanyang Technological University (NTU)
Wei Long Ng: Nanyang Technological University (NTU)
Wai Yee Yeong: Nanyang Technological University (NTU)
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 5, No 23, 2349-2364
Abstract:
Abstract In this work, our proof-of-concept study can be used to predict the number of cells within printed droplets based on droplet velocity at two different points along the nozzle-substrate distance using machine learning approaches. A novel high-throughput contactless method that combines the use of an optical system and machine learning algorithms was utilized for various applications such as cell detection within single droplets (presence/absence of cells) and prediction of the total number of printed cells within multiple droplets by measuring the droplet deceleration between two positions along the nozzle-substrate distance. The proposed method in this work has demonstrated good accuracy in cell prediction within single droplet (presence/absence of cells) and low prediction error in determining number of cells within multiple droplets by reducing the error by a factor of $$\sqrt{N}$$ for N droplets measured in a batch. The performance of five different machine learning algorithms such as linear regression, support vector regression, decision tree regressor, random forest regression, and extra tree regression were compared to determine the best algorithm for each type of application. The random forest regressor algorithm demonstrated the highest accuracy at 80% in cell prediction (presence/absence of cells) within single droplets, while the extra tree regressor demonstrated the lowest mean error of 12% in predicting the number of printed cells within multiple droplets (e.g., 20 droplets on same spot). By incorporating these models in a droplet monitoring system, live assessment of the number of printed cells during an inkjet-based bioprinting process can be achieved.
Keywords: 3D bioprinting; 3D printing; Biofabrication; Machine learning; Drop-on-demand bioprinting; Living cells (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02167-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02167-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-023-02167-4
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().