A novel technique for multiple failure modes classification based on deep forest algorithm
John Taco (),
Pradeep Kundu () and
Jay Lee ()
Additional contact information
John Taco: University of Cincinnati
Pradeep Kundu: KU Leuven
Jay Lee: University of Maryland College Park
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 7, No 6, 3115-3129
Abstract:
Abstract Deep learning is one of the emerging techniques that shows good failure modes classification prediction results due to its flexibility in recognizing patterns from raw sensor data. However, it requires complex hyperparameter optimization, high training time, and high computational hardware resources for neural network architecture. On the other hand, classical machine learning algorithms rely heavily on domain knowledge and manual feature engineering which is not always available in the industry. Therefore, we present an alternative method that learns characteristics of multivariate raw time series data to perform failure mode classification. The method is based on the deep forest algorithm, which is composed of two main processes: multi-grained scanning and cascade forest. The multi-grained scanning process windows the data and screens the times series to generate feature vectors automatically based on class probability distribution and hence recognize patterns from data. The cascade forest uses the output of the multi-grained scanning process and creates layers of random forests to make predictions. Each layer will perform fault classification, and the number of layers will increase until the accuracy of the classification does not improve. This layer-by-layer process is similar to deep learning, where the algorithm architecture is composed of different hidden layers. The presented methodology directly works with raw data in three domains: time, frequency, and time & frequency domain. Also, the method is validated using data provided by the Prognosis and Health Management (PHM) data challenge 2022 competition for hydraulic rock drill multiple failure mode classifications. The results show that the presented methodology is faster, less complex, and more accurate than deep learning algorithms.
Keywords: Deep forest; Deep learning; Fault diagnosis; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02185-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02185-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-023-02185-2
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().