EconPapers    
Economics at your fingertips  
 

Causal deep learning for explainable vision-based quality inspection under visual interference

Tianbiao Liang (), Tianyuan Liu (), Junliang Wang (), Jie Zhang () and Pai Zheng ()
Additional contact information
Tianbiao Liang: Donghua University
Tianyuan Liu: The Hong Kong Polytechnic University
Junliang Wang: Donghua University
Jie Zhang: Donghua University
Pai Zheng: The Hong Kong Polytechnic University

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 2, No 29, 1363-1384

Abstract: Abstract Vision-based quality inspection is a key step to ensure the quality control of complex industrial products. However, accurate defect recognition for complex products with information-rich, structure-irregular and significantly different patterns is still a tough problem, since it causes the strong visual interference. This paper proposes a causal deep learning method (CDLM) to tackle the explainable vision-based quality inspection under visual interference. First, a structural causal model for defect recognition of complex industrial products is constructed and a causal intervention strategy to overcome the background interference is generated. Second, a defect-guided recognition neural network (DGRNN) is constructed, which can realize accurate defect recognition under the training of CDLM via feature-wise causal intervention using two sub-networks with feature difference mechanism. Finally, the causality between defect features and defective product labels can guide the DGRNN to complete the accurate and explainable learning of defect in a causal direction of optimization. Quantitative experiments show that the proposed method achieves recognition accuracy of 94.09% and 93.95% on two fabric datasets respectively, which outperforms the cutting-edge inspection models. Besides, Grad-CAM visualization experiments show that the proposed method successfully captures the data causality and realizes the explainable defect recognition.

Keywords: Computer vision; Defect inspection; Deep learning; Causal inference; Explainable artificial intelligence (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02297-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02297-9

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02297-9

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02297-9