Optimal data-driven control of manufacturing processes using reinforcement learning: an application to wire arc additive manufacturing
Giulio Mattera (),
Alessandra Caggiano and
Luigi Nele
Additional contact information
Giulio Mattera: University of Naples Federico II
Alessandra Caggiano: University of Naples Federico II
Luigi Nele: University of Naples Federico II
Journal of Intelligent Manufacturing, 2025, vol. 36, issue 2, No 25, 1310 pages
Abstract:
Abstract Nowadays, artificial intelligence (AI) has become a crucial Key Enabling Technology with extensive application in diverse industrial sectors. Recently, considerable focus has been directed towards utilizing AI for the development of optimal control in industrial processes. In particular, reinforcement learning (RL) techniques have made significant advancements, enabling their application to data-driven problem-solving for the control of complex systems. Since industrial manufacturing processes can be treated as MIMO non-linear systems, RL can be used to develop complex data-driven intelligent decision-making or control systems. In this work, the workflow for developing a RL application for industrial manufacturing processes, including reward function setup, development of reduced order models and control policy construction, is addressed, and a new process-based reward function is proposed. To showcase the proposed approach, a case study is developed with reference to a wire arc additive manufacturing (WAAM) process. Based on experimental tests, a Reduced Order Model of the system is obtained and a Deep Deterministic Policy Gradient Controller is trained with aim to produce a simple geometry. Particular attention is given to the sim-to-real process by developing a WAAM simulator which allows to simulate the process in a realistic environment and to generate the code to be deployed on the motion platform controller.
Keywords: Industry 4.0; Reinforcement learning; Process control; Optimal control; Machine learning; Wire arc additive manufacturing (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02307-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02307-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-023-02307-w
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().