EconPapers    
Economics at your fingertips  
 

Manufacturing process selection based on similarity search: incorporating non-shape information in shape descriptor comparison

Zhichao Wang (), Xiaoliang Yan, Jacob Bjorni, Mahmoud Dinar, Shreyes Melkote and David Rosen
Additional contact information
Zhichao Wang: Georgia Institute of Technology
Xiaoliang Yan: Georgia Institute of Technology
Jacob Bjorni: California State University-Sacramento
Mahmoud Dinar: California State University-Sacramento
Shreyes Melkote: Georgia Institute of Technology
David Rosen: Georgia Institute of Technology

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 4, No 15, 2509-2536

Abstract: Abstract Given a part design, the task of manufacturing process selection chooses an appropriate manufacturing process to fabricate it. Prior research has traditionally determined manufacturing processes through direct classification. However, an alternative approach to select a manufacturing process for a new design involves identifying previously produced parts with comparable shapes and materials and learning from them. Finding similar designs from a large dataset of previously manufactured parts is a challenging problem. To solve this problem, researchers have proposed different spatial and spectral shape descriptors to extract shape features including the D2 distribution, spherical harmonics (SH), and the Fast Fourier Transform (FFT), as well as the application of different machine learning methods on various representations of 3D part models like multi-view images, voxel, triangle mesh, and point cloud. However, there has not been a comprehensive analysis of these different shape descriptors, especially for part similarity search aimed at manufacturing process selection. To remedy this gap, this paper presents an in-depth comparative study of these shape descriptors for part similarity search. While we acknowledge the importance of factors like part size, tolerance, and cost in manufacturing process selection, this paper focuses on part shape and material properties only. Our findings show that SH performs the best among non-machine learning methods for manufacturing process selection, yielding 97.96% testing accuracy using the proposed quantitative evaluation metric. For machine learning methods, deep learning on multi-view image representations is best, yielding 99.85% testing accuracy when rotational invariance is not a primary concern. Deep learning on point cloud representations excels, yielding 99.44% testing accuracy when considering rotational invariance.

Keywords: Manufacturing process selection; Shape descriptors; Deep learning; Similarity search (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02368-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02368-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-024-02368-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02368-5