A generalisable tool path planning strategy for free-form sheet metal stamping through deep reinforcement and supervised learning
Shiming Liu,
Zhusheng Shi (),
Jianguo Lin and
Hui Yu
Additional contact information
Shiming Liu: Imperial College London
Zhusheng Shi: Imperial College London
Jianguo Lin: Imperial College London
Hui Yu: University of Portsmouth
Journal of Intelligent Manufacturing, 2025, vol. 36, issue 4, No 19, 2627 pages
Abstract:
Abstract Due to the high cost of specially customised presses and dies and the advance of machine learning technology, there is some emerging research attempting free-form sheet metal stamping processes which use several common tools to produce products of various shapes. However, tool path planning strategies for the free forming process, such as reinforcement learning technique, derived from previous path planning experience are not generalisable for an arbitrary new sheet metal workpiece. Thus, in this paper, a generalisable tool path planning strategy is proposed for the first time to realise the tool path prediction for an arbitrary sheet metal part in 2-D space with no metal forming knowledge in prior, through deep reinforcement (implemented with 2 heuristics) and supervised learning technologies. Conferred by deep learning, the tool path planning process is corroborated to have self-learning characteristics. This method has been instantiated and verified by a successful application to a case study, of which the workpiece shape deformed by the predicted tool path has been compared with its target shape. The proposed method significantly improves the generalisation of tool path planning of free-form sheet metal stamping process, compared to strategies using pure reinforcement learning technologies. The successful instantiation of this method also implies the potential of the development of intelligent free-form sheet metal stamping process.
Keywords: Deep learning; Deep reinforcement learning; Deep supervised learning; Sheet metal forming; Intelligent manufacturing; Tool path planning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02371-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02371-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-024-02371-w
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().