EconPapers    
Economics at your fingertips  
 

Quality evaluation modeling of a DED-processed metallic deposition based on ResNet-50 with few training data

Hyunmin Park, Yun Seok Kang, Seung-Kyum Choi and Hyung Wook Park ()
Additional contact information
Hyunmin Park: Ulsan National Institute of Science and Technology
Yun Seok Kang: Ulsan National Institute of Science and Technology
Seung-Kyum Choi: Georgia Institute of Technology
Hyung Wook Park: Ulsan National Institute of Science and Technology

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 4, No 22, 2677-2693

Abstract: Abstract The additive-manufacturing (AM) field necessitates a robust process-monitoring system for quality assurance and control. To meet this industrial requirement, quality-evaluation models have emerged as powerful tools for providing quality feedback. Recently, convolutional-neural-network- (CNN)-based classification models have gained popularity in quality evaluation using image data. However, such models require sufficient image data for training, a requirement that is challenging to fulfill in the context of metallic AM due to the complexity of decomposition and analysis. This challenge is particularly pronounced in start-up or medium-sized metallic-AM enterprises. Moreover, many countries around the world have faced a decline in population and a shortage of labor in the engineering field. This growing shortage of workers to collect datasets exacerbates this challenge. In this study, experiments of directed-energy-deposition (DED) processes for single-line and single-track metallic deposition using AISI 316 L stainless-steel powders were conducted with two experimenters. After the process, a minimal amount of cross-sectional surface image data of the metallic deposition was binary-processed and analyzed across three quality states: normal state, surface burrs, and internal defects. To compensate for the lack of training data, multiple strategies are proposed, including image preprocessing and ResNet transfer learning. The selection of an optimization solver and layer depth for maximizing classification performance was discussed. The potential performance of ResNet dealing with binary images and performance standards with few training data was also identified by comparing with other higher-level architectures (Inception and Xcepition).

Keywords: Directed energy deposition; Quality evaluation; ResNet transfer learning; Few training data (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02408-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02408-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-024-02408-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02408-0