EconPapers    
Economics at your fingertips  
 

Deep-learning based artificial intelligence tool for melt pools and defect segmentation

Amra Peles (), Vincent C. Paquit and Ryan R. Dehoff
Additional contact information
Amra Peles: Oak Ridge National Laboratory
Vincent C. Paquit: Oak Ridge National Laboratory
Ryan R. Dehoff: Oak Ridge National Laboratory

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 7, No 11, 4679-4694

Abstract: Abstract Accelerating fabrication of additively manufactured components with precise microstructures is important for quality and qualification of built parts, as well as for a fundamental understanding of process improvement. Accomplishing this requires fast and robust characterization of melt pool geometries and structural defects in images. This paper proposes a pragmatic approach based on implementation of deep learning models and self-consistent workflow that enable systematic segmentation of defects and melt pools in optical images. Deep learning is based on an image-to-image translation–conditional generative adversarial neural network architecture. An artificial intelligence (AI) tool based on this deep learning model enables fast and incrementally more accurate predictions of the prevalent geometric features, including melt pool boundaries and printing-induced structural defects. We present statistical analysis of geometric features that is enabled by the AI tool, showing strong spatial correlation of defects and the melt pool boundaries. The correlations of widths and heights of melt pools with dataset processing parameters show the highest sensitivity to thermal influences resulting from laser passes in adjacent and subsequent layer passes. The presented models and tools are demonstrated on the aluminum alloy and datasets produced with different sets of processing parameters. However, they have universal quality and could easily be adapted to different material compositions. The method can be easily generalized to microstructural characterizations other than optical microscopy.

Keywords: Deep learning; Melt pool; Additive manufacturing; Process structure property relations; Microstructure prediction (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-024-02457-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02457-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-024-02457-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-09-22
Handle: RePEc:spr:joinma:v:36:y:2025:i:7:d:10.1007_s10845-024-02457-5