Improving Quantum Computation by Optimized Qubit Routing
Friedrich Wagner (),
Andreas Bärmann (),
Frauke Liers () and
Markus Weissenbäck ()
Additional contact information
Friedrich Wagner: Fraunhofer Institute for Integrated Circuits IIS
Andreas Bärmann: University of Erlangen-Nuremberg
Frauke Liers: University of Erlangen-Nuremberg
Markus Weissenbäck: Fraunhofer Institute for Integrated Circuits IIS
Journal of Optimization Theory and Applications, 2023, vol. 197, issue 3, No 12, 1194 pages
Abstract:
Abstract In this work we propose a high-quality decomposition approach for qubit routing by swap insertion. This optimization problem arises in the context of compiling quantum algorithms formulated in the circuit model of computation onto specific quantum hardware. Our approach decomposes the routing problem into an allocation subproblem and a set of token swapping problems. This allows us to tackle the allocation part and the token swapping part separately. Extracting the allocation part from the qubit routing model of Nannicini et al. (Optimal qubit assignment and routing via integer programming, 2021, http://arxiv.org/abs/2106.06446 ), we formulate the allocation subproblem as a binary linear program. Herein, we employ a cost function that is a lower bound on the overall routing problem objective. We strengthen the linear relaxation by novel valid inequalities. For the token swapping part we develop an exact branch-and-bound algorithm. In this context, we improve upon known lower bounds on the token swapping problem. Furthermore, we enhance an existing approximation algorithm which runs much faster than the exact approach and typically is able to determine solutions close to the optimum. We present numerical results for the fully integrated allocation and token swapping problem. Obtained solutions may not be globally optimal due to the decomposition and the usage of an approximation algorithm. However, the solutions are obtained fast and are typically close to optimal. In addition, there is a significant reduction in the number of artificial gates and output circuit depth when compared to various state-of-the-art heuristics. Reducing these figures is crucial for minimizing noise when running quantum algorithms on near-term hardware. As a consequence, using the novel decomposition approach leads to compiled algorithms with improved quality. Indeed, when compiled with the novel routing procedure and executed on real hardware, our experimental results for quantum approximate optimization algorithms show an significant increase in solution quality in comparison to standard routing methods.
Keywords: Combinatorial optimization; Integer programming; Approximation algorithms; Quantum compilation; 90C27; 90C10; 81P68 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-023-02229-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02229-w
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-023-02229-w
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().