Manfredo P. do Carmo – Selected Papers
Manfredo P. do Carmo ()
Additional contact information
Manfredo P. do Carmo: Instituto de Matemática, Pura e Aplicada (IMPA)
in Springer Books from Springer
Date: 2012
Edition: 2012
ISBN: 978-3-642-25588-5
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- A Summary of the Scientific Activities
- Manfredo P. do Carmo
- Summary of the Papers in this Volume
- Manfredo P. do Carmo
- The Cohomology Ring of Certain Kählerian Manifolds
- Manfredo P. do Carmo
- Isometric immersions with semi-definite second quadratic forms
- Manfredo P. do Carmo and Elon Lima
- Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length
- S. S. Chern, M. do Carmo and S. Kobayashi
- Rigidity and Convexity of Hypersurfaces in Spheres
- M. P. do Carmo and F. W. Warner
- Brief Survey Of Minimal Submanifolds II
- Manfredo P. do Carmo
- Minimal immersions of spheres into spheres
- Manfredo P. do Carmo and Nolan R. Wallach
- Spherical Images of Convex Surfaces
- M. do Carmo and B. Lawson
- On the Size of a Stable Minimal Surface in R 3
- J. L. Barbosa and M. do Carmo
- On Minimal Immersions with Parallel Normal Curvature Tensor
- A. G. Colares and M. P. do Carmo
- Minimal Surfaces: Stability and Finiteness
- Manfredo P. do Carmo
- A Proof of a General Isoperimetric Inequality for Surfaces
- João Lucas Barbosa and Manfredo do Carmo
- Stable Complete Minimal Surfaces in R 3 are Planes
- M. do Carmo and C. K. Peng
- Stability of Minimal Surfaces and Eigenvalues of the Laplacian
- João Lucas Barbosa and Manfredo do Carmo
- Stability Of Minimal Submanifolds
- Manfredo P. do Carmo
- Rotation Hypersurfaces in Spaces of Constant Curvature
- M. do Carmo and M. Dajczer
- Stability of Hypersurfaces with Constant Mean Curvature
- João Lucas Barbosa and Manfredo do Carmo
- Compact Conformally Flat Hypersurfaces
- Manfredo do Carmo, Marcos Dajczer and Francesco Mercuri
- The influence of the boundary behaviour on hypersurfaces with constant mean curvature in H n+1
- M. P. do Carmo, J. de M. Gomes and G. Thorbergsson
- Conformal Rigidity
- Manfredo do Carmo and Marcos Dajczer
- Stability of Hypersurfaces of Constant Mean Curvature in Riemannian Manifolds
- J. Lucas Barbosa, Manfredo do Carmo and Jost Eschenburg
- Hypersurfaces of Constant Mean Curvature
- Manfredo P. do Carmo
- Stable Hypersurfaces with Constant Scalar Curvature
- H. Alencar, M. do Carmo and A. G. Colares
- Hypersurfaces With Constant Mean Curvature in Spheres
- Hilário Alencar and Manfredo do Carmo
- Complete Hypersurfaces with Constant Mean Curvature and Finite Total Curvature
- P. Bérard, M. do Carmo and W. Santos
- Research on Differential Geometry in Brazil
- Manfredo Perdigão do Carmo
- Eigenvalues Estimates on Complete Noncompact Riemannian Manifolds and Applications
- Manfredo P. do Carmo and Detang Zhou
- Compact minimal hypersurfaces with index one in the real projective space
- Manfredo do Carmo, Manuel Ritoré and Antonio Ros
- Ricci curvature and the topology of open manifolds
- Manfredo do Carmo and Changyu Xia
- Stability of hypersurfaces with vanishing r-mean curvature in euclidean space
- Hilario Alencar, Manfredo do Carmo and Maria Fernanda Elbert
- A theorem of Hopf and the Cauchy-Riemann inequality
- Hilario Alencar, Manfredo do Carmo and Renato Tribuzy
- A Hopf theorem for open surfaces in product spaces
- Manfredo do Carmo and Isabel Fernández
- A Hopf Theorem for Ambient Spaces of Dimensions Higher than Three
- Hilário Alencar, Manfredo do Carmo and Renato Tribuzy
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-642-25588-5
Ordering information: This item can be ordered from
http://www.springer.com/9783642255885
DOI: 10.1007/978-3-642-25588-5
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().