Integrating Sentiment Analysis in Recommender Systems
Bui Thanh Hung ()
Additional contact information
Bui Thanh Hung: Thu Dau Mot University
A chapter in Reliability and Statistical Computing, 2020, pp 127-137 from Springer
Abstract:
Abstract Customer product reviews play an important role in the customer’s decision to purchase a product or use a service. Providing a useful suggestion of products to online users to increase their consumption on websites is the goal of many companies nowadays. In this paper, we propose a recommender system based on sentiment analysis. The system is built by integrating sentiment analysis to recommender system in order to generate the most accurate. We use hybrid deep learning method CNN-LSTM for sentiment analysis based on vector of words in the customer product reviews. The result in the sentiment analysis is used to combine the neighbor’s item ratings to produce a prediction value for the target user. This helps the recommender system to generate efficient recommendations for that user. We do experiment in Amazon food review dataset. The proposed model shows interesting results on the impact of integrating sentiment analysis in the recommender systems.
Keywords: Sentiment analysis; Word embeddings; CNN-LSTM; Matrix factorization; Recommender system (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ssrchp:978-3-030-43412-0_8
Ordering information: This item can be ordered from
http://www.springer.com/9783030434120
DOI: 10.1007/978-3-030-43412-0_8
Access Statistics for this chapter
More chapters in Springer Series in Reliability Engineering from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().