Maximizing Probability Bounds Under Moment-Matching Restrictions
Stephen Portnoy
The American Statistician, 2015, vol. 69, issue 1, 41-44
Abstract:
The problem of characterizing a distribution by its moments dates to work by Chebyshev in the mid-nineteenth century. There are clear (and close) connections with characteristic functions, moment spaces, quadrature, and other very classical mathematical pursuits. Lindsay and Basak posed the specific question of how far from normality could a distribution be if it matches k normal moments. They provided a bound on the maximal difference in cdfs, and implied that these bounds were attained. It will be shown here that in fact the bound is not attained if the number of even moments matched is odd. An explicit solution is developed as a symmetric distribution with a finite number of mass points when the number of even moments matched is even, and this bound for the even case is shown to hold as an explicit limit for the subsequent odd case. As Lindsay noted, the discrepancies can be sizable even for a moderate number of matched moments. Some comments on implications are proffered.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.992960 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:69:y:2015:i:1:p:41-44
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2014.992960
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().