Modeling Offensive Player Movement in Professional Basketball
Steven Wu and
Luke Bornn
The American Statistician, 2018, vol. 72, issue 1, 72-79
Abstract:
The 2013 arrival of SportVU player tracking data in all NBA arenas introduced an overwhelming amount of on-court information—information which the league is still learning how to maximize for insights into player performance and basketball strategy. The data contain the spatial coordinates for the ball and every player on the court for 25 frames per second, which opens up avenues of player and team performance analysis that was not possible before this technology existed. This article serves as a step-by-step guide for how to leverage a data feed from SportVU for one NBA game into visualizable components that can model any player's movement on offense. We detail some utility functions that are helpful for manipulating SportVU data before applying it to the task of visualizing player offensive movement. We conclude with visualizations of the resulting output for one NBA game, as well as what the results look like aggregated across an entire season for three NBA stars with very different offensive tendencies.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1395365 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:72:y:2018:i:1:p:72-79
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1395365
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().