EconPapers    
Economics at your fingertips  
 

Sum of a Random Number of Correlated Random Variables that Depend on the Number of Summands

Joel E. Cohen

The American Statistician, 2019, vol. 73, issue 1, 56-60

Abstract: The mean and variance of a sum of a random number of random variables are well known when the number of summands is independent of each summand and when the summands are independent and identically distributed (iid), or when all summands are identical. In scientific and financial applications, the preceding conditions are often too restrictive. Here, we calculate the mean and variance of a sum of a random number of random summands when the mean and variance of each summand depend on the number of summands and when every pair of summands has the same correlation. This article shows that the variance increases with the correlation between summands and equals the variance in the iid or identical cases when the correlation is zero or one.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1311283 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:1:p:56-60

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2017.1311283

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:73:y:2019:i:1:p:56-60