EconPapers    
Economics at your fingertips  
 

Blending Bayesian and Classical Tools to Define Optimal Sample-Size-Dependent Significance Levels

Mark Andrew Gannon, Carlos Alberto de Bragança Pereira and Adriano Polpo

The American Statistician, 2019, vol. 73, issue S1, 213-222

Abstract: This article argues that researchers do not need to completely abandon the p-value, the best-known significance index, but should instead stop using significance levels that do not depend on sample sizes. A testing procedure is developed using a mixture of frequentist and Bayesian tools, with a significance level that is a function of sample size, obtained from a generalized form of the Neyman–Pearson Lemma that minimizes a linear combination of α, the probability of rejecting a true null hypothesis, and β, the probability of failing to reject a false null, instead of fixing α and minimizing β. The resulting hypothesis tests do not violate the Likelihood Principle and do not require any constraints on the dimensionalities of the sample space and parameter space. The procedure includes an ordering of the entire sample space and uses predictive probability (density) functions, allowing for testing of both simple and compound hypotheses. Accessible examples are presented to highlight specific characteristics of the new tests.

Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1518268 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:s1:p:213-222

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2018.1518268

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:73:y:2019:i:s1:p:213-222