Interval Estimation for the Correlation Coefficient
Xinjie Hu,
Aekyung Jung and
Gengsheng Qin
The American Statistician, 2020, vol. 74, issue 1, 29-36
Abstract:
The correlation coefficient (CC) is a standard measure of a possible linear association between two continuous random variables. The CC plays a significant role in many scientific disciplines. For a bivariate normal distribution, there are many types of confidence intervals for the CC, such as z-transformation and maximum likelihood-based intervals. However, when the underlying bivariate distribution is unknown, the construction of confidence intervals for the CC is not well-developed. In this paper, we discuss various interval estimation methods for the CC. We propose a generalized confidence interval for the CC when the underlying bivariate distribution is a normal distribution, and two empirical likelihood-based intervals for the CC when the underlying bivariate distribution is unknown. We also conduct extensive simulation studies to compare the new intervals with existing intervals in terms of coverage probability and interval length. Finally, two real examples are used to demonstrate the application of the proposed methods.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1437077 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:74:y:2020:i:1:p:29-36
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2018.1437077
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().