Computing (Bivariate) Poisson Moments Using Stein–Chen Identities
Christian H. Weiß and
Boris Aleksandrov
The American Statistician, 2022, vol. 76, issue 1, 10-15
Abstract:
Abstract–The (bivariate) Poisson distribution is the most common distribution for (bivariate) count random variables. The univariate Poisson distribution is characterized by the famous Stein–Chen identity. We demonstrate that this identity allows to derive even sophisticated moment expressions in such a simple way that the corresponding computations can be presented in an introductory statistics class. Then, we newly derive different types of Stein–Chen identity for the bivariate Poisson distribution. These are shown to be very useful for computing joint moments, again in a surprisingly simple way. We also explain how to extend our results to the general multivariate case.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2020.1763836 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:76:y:2022:i:1:p:10-15
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2020.1763836
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().