EconPapers    
Economics at your fingertips  
 

Using the Lambert Function to Estimate Shared Frailty Models with a Normally Distributed Random Intercept

Hadrien Charvat

The American Statistician, 2023, vol. 77, issue 1, 41-50

Abstract: Shared frailty models, that is, hazard regression models for censored data including random effects acting multiplicatively on the hazard, are commonly used to analyze time-to-event data possessing a hierarchical structure. When the random effects are assumed to be normally distributed, the cluster-specific marginal likelihood has no closed-form expression. A powerful method for approximating such integrals is the adaptive Gauss-Hermite quadrature (AGHQ). However, this method requires the estimation of the mode of the integrand in the expression defining the cluster-specific marginal likelihood: it is generally obtained through a nested optimization at the cluster level for each evaluation of the likelihood function. In this work, we show that in the case of a parametric shared frailty model including a normal random intercept, the cluster-specific modes can be determined analytically by using the principal branch of the Lambert function, W0 . Besides removing the need for the nested optimization procedure, it provides closed-form formulas for the gradient and Hessian of the approximated likelihood making its maximization by Newton-type algorithms convenient and efficient. The Lambert-based AGHQ (LAGHQ) might be applied to other problems involving similar integrals, such as the normally distributed random intercept Poisson model and the computation of probabilities from a Poisson lognormal distribution.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2022.2110939 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:77:y:2023:i:1:p:41-50

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2022.2110939

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:77:y:2023:i:1:p:41-50