Optimal mechanical design of anatomical post-systems for endodontic restoration
Franco Maceri,
Marco Martignoni and
Giuseppe Vairo
Computer Methods in Biomechanics and Biomedical Engineering, 2009, vol. 12, issue 1, 59-71
Abstract:
This paper analyses the mechanical behaviour of a new reinforced anatomical post-systems (RAPS) for endodontic restoration. The composite restorative material (CRM) completely fills the root canal (as do the commonly used cast metal posts) and multiple prefabricated composite posts (PCPs) are employed as reinforcements. Numerical simulations based on 3D linearly elastic finite element models under parafunctional loads were performed in order to investigate the influence of the stiffness of the CRM and of the number of PCPs. Periodontal ligament effects were taken into account using a discretised anisotropic nonlinearly elastic spring system, and the full discrete model was validated by comparing the resulting stress fields with those obtained with conventional restorations (cast gold-alloy post, homogeneous anatomical post and cemented single PCP) and with the natural tooth. Analysis of the results shows that stresses at the cervical/middle region decrease as CRM stiffness increases and, for large and irregular root cavities that apical stress peaks disappear when multiple PCPs are used. Accordingly, from a mechanical point of view, an optimal RAPS will use multiple PCPs when CRM stiffness is equal to or at most twice that of the dentin. This restorative solution minimises stress differences with respect to the natural tooth, mechanical inhomogeneities, stress concentrations on healthy tissues, volumes subject to shrinkage phenomena, fatigue effects and risks of both root fracture and adhesive/cohesive interfacial failure.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255840802164079 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:12:y:2009:i:1:p:59-71
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255840802164079
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().